Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   


Правообладателям

Дифференциальные уравнения. Демидович Б.П., Моденов В.П.  

3-е изд., стер. - СПб.: 2008 – 288 с.  

Предлагаемая читателям книга состоит из двух частей: в первой части рассматриваются основы теории обыкновенных дифференциальных уравнений, во второй — дифференциальные уравнения с частными производными. Учебное пособие предназначено для студентов технических вузов. Написанная ясным и простым языком, книга представляется полезной также лицам, занимающимся математикой самостоятельно.

 

 

Формат: pdf        

Размер:  7,7 Мб

Смотреть, скачать:    drive.google  

 

 





 


Оглавление
ЧАСТЬ I
ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 5
Глава I. Общие понятия 5
§ 1. Задачи, приводящие к дифференциальным уравнениям 5
§ 2. Основные определения 8
Глава II. Дифференциальные уравнения первого порядка 13
§ 1. Различные формы дифференциального уравнения первого порядка 13
§ 2. Поле направлений 14
§ 3. Полигоны Эйлера 15
§ 4. Теорема существования и единственности 17
§ 5. Уравнения с разделяющимися переменными 18
§ 6. Однородные уравнения 20
§ 7. Линейные уравнения 23
§ 8. Уравнение Бернулли 30
§ 9. Уравнения в полных дифференциалах 32
§ 10. Понятие об интегрирующем множителе 35
§ 11. Интегрирующий множитель линейного уравнения 36
§ 12. Уравнение первого порядка, не разрешенные относительно производной 37
§ 13. Параметрический способ решения 38
§ 14. Уравнение Лагранжа 43
§ 15. Уравнение Клеро 46
§ 16. Особые точки 48
§ 17. Особые решения 50
§ 18. Составление дифференциальных уравнений 55
§ 19. Задачи геометрического характера 56
§ 20. Задачи физического характера 60
Глава III. Дифференциальные уравнения второго порядка 65
§ 1. Общие понятия 65
§ 2. Механический смысл дифференциального уравнения второго порядка 66
§ 3. Интегрируемые случаи 67
§ 4. Случай понижения порядка 71
§ 5. Линейные однородные уравнения с постоянными коэффициентами 75
§ 6. Физическая интерпретация линейного однородного уравнения второго порядка 81
§ 7. Линейные неоднородные уравнения с постоянными коэффициентами 85
§ 8. Физическая интерпретация линейного неоднородного уравнения второго порядка 85
§ 9. Нахождение частных решений неоднородного уравнения методом неопределенных коэффициентов 86
§ 10. О краевых задачах для уравнений второго порядка 91
Глава IV. Дифференциальные уравнения высших порядков 95
§ 1. Теорема существования и единственности решений .95
§ 2. Уравнения, допускающие понижение порядка 97
§ 3. Однородные линейные дифференциальные уравнения 100
§ 4. Неоднородные линейные дифференциальные уравнения 109
§ 5. Метод вариации произвольных постоянных 110
§ 6. Однородные линейные уравнения с постоянными коэффициентами 114
§ 7. Неоднородные линейные уравнения с постоянными коэффициентами 122
§ 8. Уравнение Эйлера 132
§ 9. Системы дифференциальных уравнений 134
§ 10. Об общих краевых задачах 140
ЧАСТЬ II
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ 146
Глава I. Уравнения первого порядка 146
§ 1. Линейные однородные уравнения 146
§ 2. Задача Коши для линейного однородного уравнения 152
§ 3. Квазилинейные уравнения 154
Глава II. Ряды Фурье 162
§ 1. Ортогональные системы функций и обобщенные ряды Фурье 162
§ 2. Тригонометрические ряды Фурье 165
Глава III. Классификация уравнений второго порядка 182
§ 1. Основные определения 182
§ 2. Приведение к каноническому виду линейных относительно старших производных уравнений второго порядка с двумя независимыми переменными 183
§ 3. Задачи с начальными данными 190
Глава IV. Основные уравнения математической физики 201
§ 1. Уравнение колебаний струны 201
§ 2. Уравнение теплопроводности 216
§ 3. Уравнение Лапласа 227
Ответы к заданиям части I 258
Ответы к заданиям части II 263
Литература 272




Предлагаемое читателям учебное пособие состоит из двух частей. В первой части рассматриваются основы теории обыкновенных дифференциальных уравнений, во второй — дифференциальные уравнения с частными производными.
Первая часть написана на основе курса лекций, читавшихся Б. П. Демидовичем в Военной Артиллерийской инженерной академии им. Ф. Э. Дзержинского (ныне Военная академия ракетных войск стратегического назначения им. Петра Великого). Ее содержание соответствует изложению за один семестр раздела «обыкновенные дифференциальные уравнения» курса высшей математики для технических вузов.
Материал первой части пособия представлен в четырех главах. В первой главе даются общие понятия теории обыкновенных дифференциальных уравнений. Во второй главе излагаются сведения об уравнениях первого порядка. Кроме детального разбора интегрируемых случаев, в ней затрагиваются элементы общей теории дифференциальных уравнений (особые точки, особые решения и др.). Третья глава посвящена подробному исследованию уравнений второго порядка. В четвертой главе рассматриваются уравнения высших порядков.

 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

.

 

 

Общеобразовательные

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

Начальная школа

Средняя школа

Решение задач

ГИА (экзамен)

ЕГЭ (экзамен)

ГДЗ по математике

Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

Помоги нашему сайту alleng!
Задонатить можно здесь:





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-2024    alleng.me, alleng.ru, alleng.org,  Russia,   info@alleng.me 

         

Контакты